INDEX

Sr. No	Title of the Experiment	Page No.
1	Study of basic logic gates \&universal gate.	-1
2	Realization of logical equation using basic gates \& universal gates.	5
3	Adder\& Subtractor	10
4	Multiplexer	12
5	Demultiplexer	16
6	Decoder/Driver	20
7	Parity Generator \& checker.	25
8	Study of Flip flop using IC \& gate	28
9	Universal Shift register	31
10	Synchronous counter using IC 7476	34
11	Synchronous counter using IC 74191	36
12	Asynchronous counter using IC 7490 Q	38
SOl \& POS FORM $\sim 2 / 8$		

TITLE: STUDY OF BASIC LOGIC GATES \& UNIVERSAL GATES.

AIM: To study basic gates.
APPARATUS: Power Supply, Breadboard, Connecting wires.
COMPONENTS: ICs 7400, 7402, 7404, 7408, 7432, 7486, LED.

IC PINOUTS
TRUTH-TABLE

NAND			
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\overline{\mathbf{A} \cdot \mathbf{B}}$	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
0	0	1
0	1	0
1	0	0
1	1	0

AND		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A} . \mathbf{B}$
0	0	0
0	1	0
1	0	0
1	1	1

OR		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	1

EX-OR		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A B}+\mathbf{A B}$
0	0	0
0	1	1
1	0	1
1	1	0

THEORY: Logic gates are the digital circuits with one output and one or more inputs. They are the basic building blocks of any logic ckt.
Different logic gates are : AND, OR, NOT, NAND, NOR, EX-OR. They work according to certain logic.
AND : Logic eqn. $Y=A . B$
The output of AND gate is true when the inputs A and B are True.
OR: Logic eqn. $Y=A+B$.
The output of OR gate is true when one of the inputs A and B or both the inputs are true.
NOT : Logic eqn. $Y=\bar{A}$.
The output of NOT gate is complement of the input.
NAND: Logic eqn. $\bar{Y}=\widetilde{\mathrm{A} . \mathrm{B}}$
The output of NAND gate is true when one of the inputs or both the inputs are low level.
NOR: Logical eqn. $Y=\overline{\mathrm{A}+\mathrm{B}}$.
The output of NOR gate is true when both the inputs are low.
EX-OR: Logic eqn. $\overline{Y=} \overline{\mathrm{AB}}+\mathrm{A} \overline{\mathrm{B}}$.
The output of EX-OR gate is true when one and only one input is true.

PROCEDURE: 1)Give biasing to the IC and do necessary connections.
2) Give various combinations of inputs and note down the output with the help of LED for all gate IC,s one by one.
3) Repeat the procedure for all gates.
4) Construct NOT,AND,OR,EX-OR using universal gates \& verify it's truth table.

CONCLUSION: Thus all logic gates are studied.

QUESTIONS: 1)What is digital circuit?
2)What is meant by Positive logic and Negative logic?
3)What is Gate?

EXPT. NO. 2

TITLE: REALIZATION OF LOGICAL EXPRESSION USING BASIC GATES \& UNIVERSAL GATES.

AIM: A)To study realization of basic gates using universal gates.
b)To study realization of logical expression using basic gates \& using only Universal gates.
APPARATUS: Power supply,Breadboard,Connecting wires.
COMPONENTS: ICs 7400, 7402, 7404,7408,7432,7486,LED's

- 1) AND:-

$$
Y=A \cdot B
$$

2) $O R:-$

3) NOT:-

$$
Y=\bar{A}
$$

1) AND:-

$$
Y=A \cdot B
$$

2) OR:-

$$
Y=A+B
$$

3) NOT:

$$
Y=\vec{A}
$$

3) $\mathrm{OR}=$ Complimenting the output of NOR gate gives output for OR

OR: Complimenting the output of NOR gate gives output OR
$\mathrm{Y}=\mathrm{A}+\mathrm{B} \quad$-equation for NOR.
$\mathrm{Y}=\mathrm{A}+\mathrm{B}(\mathrm{A}=\mathrm{A})$
$\mathrm{Y}=\mathrm{A}+\mathrm{B}$-equation for OR
AND: when we provide complenent input to NOR it function as AND,
$\mathrm{Y}=\mathrm{A}+\mathrm{B}$-equation for NOR.
$=\mathrm{A}+\mathrm{B}(\mathrm{A}+\mathrm{B}=\mathrm{A} . \mathrm{B})$
$=\mathrm{A} \cdot \mathrm{B} \quad(\mathrm{A}=\mathrm{A})$
$=A . B$-equation for AND.

Realization of logic expression using only basic gates

 \& using only Universal gatesTo realize logic expression using basic gates,simplify the expression using boolean laws, if possible draw the logic diagram \&then implement it.

Realization of logic expression using Universal gates

1)The logic diagram consisting of basic gates can be converted to one having only NAND/only NOR.
2) To convert it to NAND, add bubbles on the output of each AND gate \& on input side of all OR gates.
3)To convert it to NOR, add bubbles on the output of each OR gate \& on input side of all AND gates.
4)Add or subtract an inverter on each line that received a bubble in step 2 or 3 .
5)Replace bubbled OR by NAND \& bubbled AND by NOR.
6)Eliminate bubble inversion.

This gives you equivalent NAND/NOR logic diagram.
are shorted, to make it single variable.
$\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}=$ equation for NAND gate.
becomes $\mathrm{Y}=\mathrm{A} . \mathrm{A} \quad$ (A.A=A)
$\mathrm{Y}=\mathrm{A} \quad=$ equation for NOT.
2)AND : Inverting olp of NAND we get AND gate.
$\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}=$ equation for NAND gate.
Invert it, $\mathrm{Y}=\mathrm{A} . \mathrm{B} \quad(\mathrm{A}=\mathrm{A})$
$\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}=$ equation for AND.
3)OR: If we provided inverted i / p to NAND as an o/p
we get OR function.
$\mathrm{Y}=\mathrm{A} . \mathrm{B}=$ equation for NAND gate.
Providing inverted i / p equation becomes
$\mathrm{Y}=\mathrm{A} . \mathrm{B} \quad(\mathrm{A} . \mathrm{B}=\mathrm{A}+\mathrm{B})$
$=A+B$
$=\mathrm{A}+\mathrm{B} \quad(\mathrm{A}=\mathrm{A})$

NOR(Universal gate)

1)NOT : When we short ilp of NOR it behaves as NOT.
$\mathrm{Y}=\mathrm{A}+\mathrm{B}$-equation for NOR.
$\mathrm{Y}=\mathrm{A}+\mathrm{A}-(\mathrm{A}+\mathrm{A}=\mathrm{A})$
$\mathrm{Y}=\mathrm{A} \quad$-equation for NOT.
2)AND = when we provide complimented input to NOR it function as AND.
$\mathrm{Y}=\mathrm{A}+\mathrm{B}-$-equation for NOR.
$=A+B(A+B=A . B)$
$=\mathrm{A} \cdot \mathrm{B}(\mathrm{A}=\mathrm{A})$
$=A \cdot B$ equation for AND.
-

PROCEDURE: 1) Give biasing to the IC $\&$ do necessary connection.
2) Give various combination of i / p 's \& note down the output.

OBSERVATION

TABLE:

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	
0	1	
1	0	
1	1	

CONCLUSION:
Thus realization of basic gates \&universal gate is studied.

QUESTIONS: 1)Implement the function using only basic gates \&using only universal gates?

1) What is the voltage range for LOW and HIGH level?
2) Implement the function using only basic gates \&using only universal gates.Modify the logic equation if necessary by using boolean laws?
$\mathrm{Y}=\mathrm{AC}[\mathrm{ABD}]+\mathrm{ABCD}+\mathrm{ABC}$

EXPT. NO. 3

TITLE: ADDER AND SUBTRACTOR
AIM: \quad To study adder and subtractor circuits using logic gates.
APPARATUS: Power supply, breadboard.
COMPONENTS: ICs 7486, 7432, 7408, 7404, LEDs.
CIRCUIT:
DIAGRAM
AND
OBSREVATION
TABLE:

THEORY:
A digital adder circuit adds binary signals \& a subtractor subtracts binary signals. Half Adder/Subtractor is a basic ckt. that adds / subtracts 2 bits and generates sum or difference along with Carry / Borrow. Unlike half adder or subtractor a full adder / subtractor has the provision to take consideration of previous carry / borrow also.
PROCEDURE: 1) Do necessary connections as shown in the ckt. diagram and give biasing to the Ics.
2) Give various combinations of inputs and notedown output using LED.
3) Repeat the procedure for all circuits.

CONCLUSION: Thus half $\&$ full Adder / Subtractor is studied
QUESTIONS: 1)What is meant by combinational circuit?
2)Design a full adder by Kmap method.

EXPT. NO . 4

TITLE MULTIPLEXER

AIM 1)To study $4: 1,8: 1,16: 1$ multiplexer.
2)Design \& implement $4: 1$ multiplexer using NAND \&NOR gates.

APPARATUS Power supply, Breadboard,connecting wires. COMPONENTS IC 74151, 74150,74153,.7400,LEDs.

IC 74151

Multiplexer is a combinational ckt. that is one of the most widely used in digital design. The multiplexer is a data selector which gates one out of several i / ps to a single o / p. It has n data $\mathrm{i} / \mathrm{ps} \&$ one o / p line $\& \mathrm{~m}$ select lines where $2^{\mathrm{m}}=\mathrm{n}$. Depending upon the digital code applied at the select inputs one out of n data input is selected \& transmitted to a single o/p channel. Normally strobe(G) input is incorporated which is generally active low which enables the multiplexer when it is LOW. Strobe i / p helps in cascading, A 4:1 Mux. using NAND gate can be designed as shown in dgm 1. No. of ICs are available such as 74157, 74158 (Quad 2:1 mux), 74352, 74153 (dual 4:1 Mux.), $74151 \mathrm{~A}, 74152$ (8:1 Mux.), 74150 (16:1 Mux). IC 74151A is a $8: 1$ multiplexer which provides two complementary o/ps Y \& Y. The o/p Y is same as the selected i / p \& Y is its complement. The $n: 1$ multiplexer can be used to realize a m variable function. ($2^{\mathrm{m}}=\mathrm{n}, \mathrm{m}$ is no. of select inputs)
IC no Description output 74153 dual 4:1 mux same as input $74152 \quad$ 8:1 mux inverted input

16:1 mux
A)To pmplement certain function using mux. for eg. $F(A, B, C, D)=\sum m(0,2,3,6,8,9,12,14)$.since there are four variables, a mux with four select input is required.so, 16:1 mux is required. connect the i / p lines
0.2.3.6.8.9, 12,14 to logic 1 \&others to logic 0. if the o / p of mux is active high. If o / p is active low interchange 1 with 0 .
B)Design \&implement 4:1 mux using NAND

Truth table of a 4:1 mux

select inputs		outputs
S1	S0	Y
0	0	I0
0	1	I1
1	0	I2
1	1	I3
With low i / p at G, the o/p Y		

PROCEDURE: CASE A)

1) Study $4: 1,8: 1,16: 1$ using IC $74153,74150,74152$ respectively.
2) Implement the function
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,3,6,8.9,12,14)$ using IC
74150\&74152
3)Do the necessary connection $\&$ observe the output for different input combination

CASE B)

1) Implement the $4: 1$ mux using strobe input \&IC 7400
2) Do the necessary connection \& observe the output For different input combination

CONCLUSION:

1) $4: 1,8: 1,16: 1$ are studied.
2)4:1 mux using Nan gate is implemented

QUESTIONS: 1) Design 4:1 max using NOR gate.
2) Connect two 74150 ICs \& Verify it"s operation as 32:1 Mux

15

EXPT. NO. 5
TITLE: DEMULTIPLEXER
AIM: \quad To study $1: 4,1: 8,1: 16$ demultiplexer.
APPARATUS: Power supply, Breadboard,connecting wires.
COMPONENTS: IC 74155, 74138,74154,LEDs.
IC PINOUT:

THEORY:
Demux takes single $\mathrm{i} / \mathrm{p} \&$ distributes it over several o/ps. It accepts a single input $\&$ distributes it over several outputs. The select input code determines to which output the data input will be transmitted.
The no. of output lines is $n \&$ the no. of select lines is m, where $\mathrm{n}=2^{\text {M. }}$ This circuit can also be used as Binary to decimal decoder with binary input applied at the select input lines \& output will be obtained at the corresponding data lines. The data input line is to connected to logic 1 level.The device is very, useful in multiple output combinational circuit is to be designed because this needs minimum package count.These devices are available as 2 line-4line, 3 line- 8 line, 4 line
16 line decoder. output of most of these devices are active low.unlike the multiplexer decoder doesn't require some gates in order to realize boolean expression in standara SOP format.
IC No. Description Output

74155 Dual 1:4 demux 1Y-inverted input 2 Y -same as input Inverted input

1:16 demux same as input

2)Do necessary connections.
3)Verify the operation of $1: 4,1: 8,1: 16$ Demux usine IC.
4) Implement 5 line to 32 line decoder using suitable decoder logic.

OBSERVATION

TABLE:

2-Line to 4-Line Decoder OR 1-Line to 4-Line Demultiplexer

CONCLUSION: Thus demux.it's cascading \& to implement multiple output function combinational logic design is studied

QUESTION: 1)Implement the following multiple output function using demux $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,1,3,7)+\mathrm{d}(2,5)$
$\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(1,5,7)$
F3 (A,B,C) $=\sum \mathrm{m}(0,2,4,6)$
2) Design \& implement full adder using suitable decoder logic.

EXPT. NO. 6

TITLE: DECODER/ DRIVER FOR DISPLAY DEVICE

AIM: \quad To study BCD to 7-segment decoder/driver using IC7447.

APPARATUS: Power supply, Breadboard, connecting wires.
COMPONENTS: ICs 7447, display device.
THEORY: In many digital system we prefer to see the output in decimal format.Seven segment display is the most popular display device used in digital systems. For displaying data using this device, the data have to be converted from BCD to 7 -segment code. A no. of MSI IC's are available for performing this function.the decoder /driver has 4 input lines for BCD data \& 7 output lines to drive 7 segment display.output terminals a through 9 of the decoder are to be connected to a through 9 terminals of the display respectively, If the outputs are active low, then the 7 -segment LED must are active low, then the 7 segment LED must be of common anode type, whereas if the output are active high then the 7 segment LED must be of common cathode type.available BCD-7 segment decoder IC's are given in a table.

IC NO	OUTPUT	RATING	FACILITIES AVAILABLE			
7446,74246	Active low,open collector	$30 \mathrm{~V}, 40 \mathrm{MA}$	YES	YES	YES	YES
7447,74247	Active low,open collector	$15 \mathrm{~V}, 40 \mathrm{MA}$	YES	YES	YES	YES
7448,74248	Active high,pull up resistor	$5.5 \mathrm{~V}, 6.4 \mathrm{ma}$	YES	YES	YES	YES
7449,74249	AK.ohm Active high,open collector	$5.5 \mathrm{~V}, 8 \mathrm{MA}$	NO	NO	NO	YES

LT(Lamp test):

This is used to check the segment of LED.If it is connected to logic 0 level , all the segments of the display connected to the decoder will be ON.For normal decoding operation, this terminal is connected to logic 1 level.

RBI (Ripple blanking input):

It is connected to logic 1 for normal decoding operation.If it is connected to 0 level, the segments output will generate data for normal 7 segment decoding for all BCD input except 0 . Whenever the BCD input corresponds to 0 , the 7 segment display switches off. This is used to blanking out leading zero's in multidigit display.

RBO (Ripple blanking output):

This output which is normally at logic 1 level goes to logic 0 during zero blanking interval. This is used for cascading purposes $\&$ is connected to RBI of the succeding stage.
BI(Blanking input):
If it is connected to logic 0 level, display is switched off,irrespective of BCD inputs. this is used for conserving power in multiplexed displays.

WECH
focmat:

PROCEDURE: 1)Do necessary connection.
2)Observe the output by providing different input combinations.

CONCLUSION: $\quad \mathrm{BCD}$ to 7 -segment decoder is studied.
Question:

TITLE
PARITY GENERATOR AND CHECKER

AIM Study of parity generator and checker using IC 74180

1. Verify the function table.
2. Design 40 bit even parity generator.
3. Design $\frac{80}{8}$ bit even parity checker.

8

APPARATUS

COMPONENTS IC 74180, LED's

PINOUT DIAGRAM

Power supply, breadboard, connecting wires

1) A parity bit is used for the purpose of detecting errors during transmission of binary information.
2) It is an extra bit included with the binary message to make no of 1 's Odd or Even. This message is then transmitted and then checked at the receiving end for errors.
3) An error is detected if the transmitted parity doesn't match with the received one.
4) The circuit that generates the parity bit at the transmitter is called Parity Generator and the circuit that checks the parity at the receiver is called Parity Checker.
5) IC 74180 can work as Parity Generator as well as Parity Checker

PROCEDURE

1. Do necessary connection for the IC to work as 8 bit parity checker
2. Give various 8 bit parity i / p. cascading i/p must not be Equal note down o/ps.
3. Do necessary connection for the IC to work as 9 bit parity Generator
4. Give various 8 bit parity i / p. Note down o/p's.

FUNCTION TABLE AS A 8 BIT PARITY CHECKER

Parity of i/p's A through H	Cascading i/p's		Output	
	Even	Odd	\sum Even	\sum Odd
Even	1	0	1	0
Odd	1	0	0	1
Even	0	1	0	1
Odd	0	1	1	0
x	1	1	0	0
x	0	0	1	1

FUNCTION TABLE AS A 9 BIT PARITY GENERATOR

Parity of i / p 's A through H	Cascading i/p's		Parity of i/ps A through H and Σ Even	Parity of i / ps A through H and इOdd
	Even	Odd		
Even	1	0	Odd	Even
Odd	1	0	Odd	Even
Even	0	1	Even	Odd
Odd	0	1	Even	Odd

QUESTIONS Design a 10 bit Even Parity Generator using single IC 74180 and an Inverter. Verify its operation.
2) Design a 10 bit Even Parity Checker.

TITLE: STUDY OF FLIP-FLOPS USING IC \&GATE.
AIM: \quad To study R-S, J-K, D and T flip-flops using IC 7476.
APPARATUS: Breadboard, Power supply.
COMPONENTS: IC 7400, 7402, 7476, LED

CIRCUIT
I) SR FF using NAND

DIAGRAM
AND
TRUTHTABLE:
$1 H 2$

$\mathbf{C l k}$	\mathbf{S}	\mathbf{R}	Qu
0	X	X	
1	0	0	Q_{n}
1	0	1	0
1	1	0	1
1	1	1	toggle

II) JK FF (IC 7476)

Calk	\mathbf{J}	\mathbf{K}	$\mathbf{Q n}$
	0	0	$\mathbf{Q n}$
	0	1	0
	1	0	1
	1	1	$\overline{Q n}$

THEORY: Flip-flops are the basic building blocks of sequential ckt. The clocked FFs change their o / p state depending upon i / p 's at certain interval of time synchronized with the clock pulse applied to it.
Different types of FFs are S-R, J-K, D \& T . Their operations are described by the respective truthtables. MSI chip 7476 incorporates two negative edge triggered Master-Slave JK flipflops. The J-K flipflop can be converted to D \& T flipflop.

PROCEDURE: 1)Give biasing to the IC and do necessary connections. 2)For various combinations of i / p verify the truthtable.

CONCLUSION: Thus R-S, J-K, D \& T Flip-Flops are studied.

QUESTIONS: 1)Construct clocked S-R FF using only NAND gates \& verify the truthtable.
2) Verify the truthtable of J-K FF using IC 7476.

Observe the effect of Preset \& Clear i/ps.
3)Convert the J-K FF to D \& T FF.

EXPT NO: 9

TITLE
UNIVERSAL SHIFT REGISTER
AIM

1. To study different modes of operation of Universal Shift Register using IC 74194
2. Implement Ring counter and Johnson counter using the same IC.

APPARATUS D.C Power supply (5v), function generator, bread board, connecting wires, etc.

COMPONENTS IC 74194, LED's resistor (180 ohm, 1/4 watt), etc.
PINOUT DIAGRAM

IC 74194 is an MSI 4 bit bidirectional parallel in parallel out shift register. Its contents may be shifted in either of two directions. Left (QD to QA) or right (QA to QD) depending on control input applied.

FUNCTION TABLE

Function	Inputs		Next State				Clear
	S1	S0	QA	QB	QC	QD	
Hold	0	0	QA	QB	QC	QD	1
Shift Right	0	1	Rin	QA	QB	QC	1
Shift Left	1	0	QB	QC	QD	Lin	1
Load	1	1	A	B	C	D	1
Clear	X	X	0	0	0	0	0

PROCEDURE

1. Connect the $5 v$ supply to the IC
2. Apply clock signal of suitable frequency.

3 Observe the operation of the shift register in SIPO (shift right, shift left) PIPO modes

OBSERVATIONS

Sr.	Con	trol			Dat	In	ut				esen	Sta			Next	Stat	
	clr	S1	S0	Lin	Rin	A	B	C	D	QA	QB	QC	QD	QA	QB	QC	QD
1		0	0														
2		0	0														
3	1	0	0														
4	1	0	0														
5		0	1														
6	1	0	1														
7	1	0	1														
8	1	0	1														
9		1	0														
10	1	1	0														
11	1	1	0														
12		1	0														
13		1	1														
14																	
15																	
16																	
												1					
QUESTION				Design a self correcting Ring counter and Johnson counter using the same.													

33
(4)

EXPT NO: 11

TITLE
AlM
SYNCHRONOUS COUNTER
Study of Synchronous counter using IC 74191

APPARATUS Power supply, breadboard, Function generatir
COMPONENTS IC 74191, LED's

PINOUT DIAGRAM

A	B	$C D$
0	0	0

$\begin{array}{lll}M S B & \angle S B \\ Q_{D} D & Q_{C} & Q_{B}\end{array} Q_{A}$

THEORY IC 74191 is a synchronous up / down counter. It is a 4 bit binary counter. It contains 4 master slave Flip Flops with internal gating and steering logic to provide asynchronous preset ant synchronous count up, count down operations. Its asynchronous parallel load capability permits the counter to be preset to any number. The information present on parallel data inputs (A, B, C, D) is loaded into the counter and appears on the output when $\overline{P L}$ is active low. This operation has got highest priority over the counting operation. The counting is enabled when $\overline{\mathrm{CE}}$ is active low. The clock signal is a low to high, transition valid signal. $\overline{U P}$ / DOWN determines up counting and down counting.

2. Verify its function table

FUNCTION TABLE

Operating Mode	Inputs					
	$\overline{P L}$	\bar{U} / D	$\overline{C E}$	$C P$	D_{n}^{X}	Outputs
Parallel load	L	X	X	X	L	$Q_{N} \quad Q_{B} Q_{C} Q_{D}$
	L	X	X	X	H	$A B$
Count up	H	L	L	\uparrow	X	Count up +1
Count Down	H	H	L	\uparrow	X	Count Down -1
Hold (no change)	H	X	H	X	X	no change

CONCLUSION Function table of synchronous counter was verified.

TITLE
AIM

APPARATUS Power supply, breadboard, function generator, connecting wires.
COMPONENTS IC 7476, LED's, IC 7404

PINOUT DIAGRAM

34

THEORY In this counter all flip flops are synchronized with the common clock. These counters are faster than asynchronous counters. Since all the flip flop's are clocked at the same time, propagation delay is reduced to a greater extent. Total propagation delay between instant at which the MSB output changes is equal to the sum of propagation delay of one flip flop and that of one AND gate

Total Propagation Delay $=$ td of one Flip Flop + td of one gate.
This propagation delay is much lesser than the delay present in asynchronous counter. Due to reduced propagation delay, synchronous counters can operate at a much higher clock frequency than asynchronous counters.

PROCEDURE

1. Make the connection as per the logic Diagram.
2. Give biasing to the IC.
3. Observe the output of the circuit.

OBSERVATIONS: Draw the output waveform with respect to clock signal.

ASSIGNMENT: Design a 3 bit up/down synchronous counter.

